Neighborhood Effects and Trial on the Internet: Evidence from Online Grocery Retailing

David R. Bell and Sangyoung Song

Grocery Store Antitrust: Historical Retrospective and Current Developments May 24, 2007

Outline

- Background
 - Motivation and definitions
- Research Questions and Approach
- Model
 - Elements and assumptions
 - Neighborhood effects
- Empirical Analysis
 - Data
 - Preliminaries
 - Results
- Conclusion

Background

"... choice of a store location has a profound effect ... A bad choice may all but guarantee failure, a good choice, success."

"Store Location: Little Things Mean A Lot" CBSC.

For the Internet retailer, however ...

- Geographical boundary of customer base constrained only by availability of shipping infrastructure
- Multiplicity of competitors and customer options
- \Rightarrow Relevance of interaction?
- \Rightarrow Implications for evolution?

Background

Empirical distribution of (a) revenue and (b) average value reveals

- California, Texas, Florida, New York generate most revenue
- Interior western states have larger orders
- Observational units: Individuals denoted by i reside in regions denoted by z, may experience an event at t
- Social contagion/neighborhood effect: Local spillovers resulting from (observational) learning and/or direct communication
- Risk set: Group of regions that have yet to experience the event (regions); sum of all individuals over all regions (individuals)

Background

- Agents' decisions influenced by decisions of others
 - BANERJEE (1992)
 - BIKHCHANDANI, HIRSHLEIFER & WELCH (1992)
- Economic processes may generate spatial patterns
 - CASE, HINES & ROSEN (1993)
 - GOOLSBEE & KLENOW (2002)
- Social networks disseminate information
 - OYEN & DE FLEUR (1953)
 - TOLENAY, DEANE & BECK (1996)
- External information more relevant for "trial"
 - HOWARD & SHETH (1969)
 - URBAN (1975)

Research Questions and Approach

- 1. Are neighborhood effects present in trial of Internet service?
 - (a) Is the effect identifiable and consistent with rational behavior?
 - (b) If present, what is the economic impact on spacetime diffusion?
 - (c) (Are neighborhood effects absent for repeat?)

\Rightarrow Approach

- Link statistical theory of hazard to random utility
- Estimate effect with appropriate controls

Elements and assumptions

ullet Instantaneous probability that event occurs for individual i at time t

$$\lambda(t) = \lim_{\Delta \to 0} P(t \le T_{iz} \le t + \Delta | T_{iz} \ge t) / \Delta$$

• The discrete time analog is

$$P_{iz}(t) = P(T_{iz} = t | T_{iz} \ge t, X_{iz}(t))$$

- $-T_{iz}$ is a discrete random variable denoting uncensored time of trial
- Expression is also a conditional probability
- Individual i at location z has an unobserved utility value for trial at t

$$U_{iz}(t) = V_{iz}(t) - \epsilon_{iz}(t)$$

 \Rightarrow Advantages but two serious problems ...

Elements and assumptions

• $\epsilon_{iz}(t)$ are iid over individuals and time within region, with pdf

$$f(\epsilon) = \frac{1}{\mu} \exp\left[\frac{\epsilon - \eta}{\mu}\right] \exp\left\{-e^{\frac{\epsilon - \eta}{\mu}}\right\}$$

• Probability that individual i in region z experiences trial at time t is obtained from $F(\epsilon)$ as

$$P(y_{iz}(t) = 1) = P(\epsilon_{iz}(t) \le V_{iz}(t))$$
$$= 1 - \exp\left\{-\exp\left\{\frac{V_{iz}(t) - \eta}{\mu}\right\}\right\}.$$

• The probability that at least *one* individual tries is

$$P(y_z(t) = 1) = P(\max_i \{ U_{iz}(t) \mid i = 1, \dots, n_z \} \ge 0)$$

$$= P(\max_i \{ V_{iz}(t) - \epsilon_{iz}(t) \} \ge 0)$$

$$= P(V_z(t) - \min_i \{ \epsilon_{iz}(t) \} \ge 0)$$
since we have $V_{iz}(t) = V_z(t) \ \forall i$

$$= P(\min_i \{ \epsilon_{iz}(t) \} \le V_z(t))$$

Elements and assumptions

• Solution is to define region-specific event — probability that unobserved maximal individual's utility exceeds zero is equivalent to probability that observed deterministic utility $V_z(t)$ for the representative individual from region exceeds minimum value of all $\epsilon_{iz}(t)$

$$\epsilon_{iz}(t) \sim G(\eta, \mu)
\epsilon_{z}^{min}(t) = \min_{i} \{ \epsilon_{iz}, i = 1, \dots, n_{z} \}
\sim G(\eta - \mu \ln(n_{z}), \mu).$$

 \bullet So that probability that trial occurs in region z given that it has not yet occurred is obtained as

$$P(y_z(t) = 1) = F(\epsilon_z^{min}(t))$$

$$= 1 - \exp\left\{-\exp\left\{\frac{V_z(t) - (\eta - \mu \ln(n_z))}{\mu}\right\}\right\}$$

$$= 1 - \exp\left\{-\exp\left\{V_z(t) + \ln(n_z)\right\}\right\}$$

Neighborhood effects

• Amend deterministic component of region utility

$$V_z'(t) = V_z(t) + \theta[w_z Y_z(t-1)]$$

- Ensure consistency with rational behavior (BROCK & DURLAF 2001)
- Ensure identification no "reflection" (MANSKI 1993)
- One candidate for $w_z Y_z(t-1)$ is obtained from first order contiguity

Neighborhood effects

- Lagged expected average choice behavior is a valid representation of social utility (BROCK & DURLAF 2001)
- Identification is possible because relationship between effect and regressors is nonlinear for sufficient variation in neighborhood characteristics
- Implications of reflection
 - True effect if probability of event varies with measure of average probability (behavior) of *exogenous* reference group
 - Contextual effect if probability of trial varies according to the characteristics of the reference group
 - Correlated effect if probability varies due to correlated unobservables

Summary of properties

- Within Regions. IID utilities, focus on the first trier
- Across Regions. Influence flows across exogenously defined groups
- Rationality. Model is consistent with RUM, no reflection problem
- Other. Gumbel distribution exploited to circumvent lack of individual information; choice of interval length can introduce bias, however complementary log-log model estimates consistent with underlying continuous time process

Data

- 1. Disaggregate transaction information
 - Customer identification code
 - Total transaction value
 - 382,478 transactions (05/01/97 through 01/31/01)
 - 162,618 customers
 - 45 discrete time periods

- 2. Supplementary zip code information
 - 29,701 residential zip codes
 - Match to census data for control variables
 - (a) Intrinsic characteristics
 - (b) Household economics
 - (c) Local environment

- 3. CACI retail information
 - Zip code summary of retail presence, sales at convenience, drug, supermarket, w/house stores

- 4. Measure of contagion/neighborhood effect
 - Lagged cumulative effect (LC)
 - Lagged effect (L)

Preliminaries

- Individuals
 - Average order value \$ 51.53 (SD = \$50.99) [supermarket \$29.80 (SD = \$29.18)]

• Regions

- 29,701 residential zip codes with 369,146 orders and 156,069 customers
- 1,508 non-residential zip codes with 25,123 orders (eliminated)
- Trial penetration is approximately 60 percent by 01/31/01
- Average number of contiguous neighbors = 5.61 (SD = 2.30), some "islands"
- National Space-Time
- Local Space-Time

Results: Initial evidence

- Neigborhood effect only models
 - Show significant effects for all formulations
 - Suggest cumulative approach is best
 - Support distributional assumptions, model structure — coefficient on $ln(n_z)$ very stable
- But ... is the effect "real"
 - Unobserved common traits
 - Unobserved heterogeneity
 - Endogeneity
 - (Unobserved correlated process)

Results: Further evidence

- Expand formulation with
 - Non-parametric time-dependent baseline hazard (heterogeneity)
 - Observed heterogeneity across regions
 - State-level fixed effects (unobserved common traits)
 - State-level mean observables as instruments
 - Internet access, random effect
- After introduction of controls (120 variables), θ
 - Diminishes in magnitude
 - Remains statistically significant
 - Is second most important variable (Wald χ^2 and standardized coefficients)
 - Holds under alternative formulations for n_z and $w_z Y_z(t-1)$

Results: Substantive implications

- Approximately nineteen percent increase in baseline hazard
 - \Rightarrow Marginal effect of zero to 20,000 neighbors trying, increases focal zip code probability from about 2.7% to 14.0
- Empirical findings
 - (1) Household Characteristics
 - -(2) Household Economics
 - -(3) Local environment
 - -(4) Access to Retail Services

Conclusions

- Evidence suggests that neighborhood effects
 - operate on Internet ⇒ social observation/exchange grounded in proximity is important
 - (dissipate when individuals have own information?)
 - (could be exploited through judicious seeding)?
- Discrete time hazard model for continuous time process with an unobserved risk set can be derived to link individuals and regions
- Future research
 - Affiliation based on "socio-demographic proximity" (working paper)
 - Preference minorities (in progress)

Total Order Value

FTC May 24, 2007

Average Order Value per Customer

FTC May 24, 2007

Average Number of Transactions

FTC May 24, 2007